
C. Leggett 2019-09-26
1

Porting Algorithms to Accelerators

Charles Leggett

US ATLAS HPC Meeting

September 26 2019

C. Leggett 2019-09-26
2

The Challenge (Part I)
► We need enormously more compute

power for HL-LHC than we did for Run I
and II
• We can survive Run III with the current

environment
• We can't survive in Run IV

► Lots of simulation, larger events due to
much higher multiplicity

► Tracking combinatorics begin to
dominate at high μ

C. Leggett 2019-09-26
3

The Challenge (Part II)
► In the next generation of supercomputers we see extensive use of accelerator technologies

• Oak Ridge: Summit (2018)
• 4608 IBM AC922 nodes w/ 2x Power9 CPU
• 3x NVIDIA Volta V100 + NVLink / CPU

• LBL: NERSC-9 "Perlmutter" (2020)
• AMD EPYC "Milan" x86 only nodes +

mixed CPU / "next gen" NVidia GPU

• Oak Ridge: Frontier (2021)
• 1.5 exaflop
• AMD EPYC CPU + 4x AMD "Instinct" GPU

• Commercial clouds:
• Brainwave / Azure FPGA
• Google Cloud TPU

► In order to meet the HL-LHC computing requirements, we need to use all available
computing resources, or cut back physics projections
• US funding agencies have indicated that we will not be able to get allocations if

our code does not make use of accelerator hardware

• LLNL: Sierra (2018)
• 4320 IBM AC922 nodes w/ 2x Power9 CPU
• 2x NVIDIA Volta V100 + NVLink / CPU

• Argonne: Aurora A21 (2021)
• Intel Xeon CPU + Intel Xe/gen12 GPU + Optane

• Tsukuba: Cygnus (2020)
• 2x Intel Xeon 6162+ 4x NVidia V100 GPU
• 2x CPU + 4x GPU + 2x Intel Stratix FPGA

• Japan: Fugaku (2021)
• manycore ARM A64fx (48+2)
• integrated "SVE" 512 bit GPU-like accelerator

C. Leggett 2019-09-26
4

The Challenge (Part III)
► HEP algorithms are not easily parallelized or offloadable to an accelerator

• very branchy
• not very many wide loops or opportunities for SIMD style decomposition
• EDM is C++ish. GPUs want arrays.

• don't want to transform data back and forth every data is offloaded

• lots and lots of Algorithms / Modules
• death of a thousand cuts

► Most direct ports of HEP code to accelerators have been for the Online environment,
where the hardware requirements are known in advance, and the system parameters
are very well defined
• you pick and choose your hardware, and code to match
• you don't expect an upgrade cycle every 2 years

C. Leggett 2019-09-26
5

The Challenge (Part IV)
► We see all three flavours of ice cream in the next the DOE HPCs

• A21: Intel, Perlmutter: NVidia , Frontier: AMD

► Each accelerator vendor has its own flavour of programming tools to target their GPU
• NVidia: CUDA
• Intel: SYCL / OneAPI / dpcpp
• AMD: hip

► Our software needs to run for the next 10+ years
• we cannot afford to re-write for each hardware platform

► And what comes out in 5 years?
• we may see more “exotic” architectures (TPU, FPGA, ASIC)

► What happens if a vendor significantly modifies their programming environment?
• eg AMD recently dropped SPIR support for hip/ROCm

C. Leggett 2019-09-26
6

Framework Integration
► Significant impedance mismatch:

• V100 has 160,000 threads
• Most of our loops are much less wide than that

• gang data between events to increase GPU workload?

► It is likely that we will need to be able to schedule and execute concurrent kernels on
the GPU
• some support (eg CUDA streams), but not extensive and has significant performance

drawbacks
• currently significantly limits portability solutions

• this will (is promised) to change in the coming year

► Depending on how vendors implement synchronous vs asynchronous kernel
launching, may need to redesign parts of Athena / Gaudi framework
• currently we've implemented a synchronous mechanism, on the assumption that we can

re-task the CPU to do other work.
• this has been poorly implemented by the hardware (NVidia, Intel)

• asynchronous requires a callback (á la cmssw): incompatible with current Gaudi

C. Leggett 2019-09-26
7

Working Towards A Solution
► We need to find a portable solution that works for all accelerator platforms

• portability is more important than performance

► Projects worth exploring
• Kokkos
• Raja
• SYCL / OpenCL
• OpenMP
• OpenACC
• ???

► While some of these look good on paper, it is very important to understand how they
map onto our workflows and framework
• something which works well for the online may not map onto the offline

► We need to encourage ($$$) vendors to provide portability solutions
► We may need to develop these solutions ourselves if the vendors can’t deliver

► Machine learning tools
• pytorch, tensorflow, etc
• requires major paradigm shift to use

pervasively
• does map much better onto accelerators
• back-ends already there

C. Leggett 2019-08-16
8

f in
(time for discussion)

C. Leggett 2019-09-26
9

SYCL Ecosystem

C. Leggett 2019-09-26
10

Kokkos
► Somewhat less flexible than SYCL

• hard to explicitly dispatch kernels without use of a parallel_for-like construct
• need to identify back-end at compilation time
• no concurrent kernel execution at this time

• beta version that explicitly uses cuda streams

► Has important features that aren't in SYCL
• reduction construct
• child tasks
• more performant

► Support for Intel GPU and AMD not ready yet
• sometime next year

